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Many of the features of postischemic brain injury in children are similar
to injury in adults; thus, much of this issue of the Neurologic Clinics of North
America applies to children and adults. There are two important differences,
however, that merit a separate section focused on pediatric injury. First, the
mechanism of cardiac arrest in children differs, with respiratory causes far
outnumbering cardiac causes (Tables 1 and 2). Second, the developing brain
has different vulnerability and potential for repair compared with the ma-
ture brain. This article reviews these differences and the available clinical
data relevant to pediatric brain injury following cardiac arrest.

Asphyxial cardiac arrest

The most common cause of nontraumatic cardiopulmonary arrest in chil-
dren is airway compromise [1–3]. Although ventricular fibrillation (VF) or
ventricular tachycardia (VT) occurs less commonly in children than in
adults, it is not rare: approximately 5% to 15% of children with prehospital
arrest have VF/VT [4–6].

Asphyxia can be clinically defined as airway obstruction or inadequate
ventilation leading to hypoxemia and hypercarbia. Examples include
drowning, choking, and coma accompanied by loss of airway patency.
The typical progression of untreated asphyxia is hypertension and increased
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work of breathing (where possible), followed by bradycardia, hypotension,
pulseless electrical activity, and eventually, asystole.

Although both VF and asphyxial cardiac arrest result in global brain
ischemia, the pattern of ischemia differs (Table 3). VF causes an abrupt ces-
sation of cardiac output, whereas asphyxia causes an initial hypertension,
followed by a gradual decrease in flow until pulseless electrical activity
and, finally, asystole occur. Paradoxically, although low cerebral blood
flow is better than no flow, a ‘‘trickle’’ of flow can be worse than no flow.
This phenomenon was demonstrated in a study by Bottiger and colleagues
[7] that showed worse postresuscitation cerebral reperfusion in rats that
had 12-minute untreated VF plus 5-minute VF treated with cardiopulmo-
nary resuscitation compared with rats subjected to 17-minute untreated
VF. Theories for the damaging effect of trickle flow include (1) the contin-
ued delivery of substrate during conditions of anaerobic metabolism, caus-
ing worse tissue acidosis; and (2) the continued delivery of platelets and
coagulation factors, causing worse microvascular plugging that would

Table 1

Etiology of out-of-hospital cardiac arrest in children

Cause of arrest n (%)

Sudden infant death syndrome 136 (23)

Trauma 118 (20)

Respiratory 96 (16)

Submersion 73 (12)

Cardiac 48 (8)

Central nervous system 35 (6)

Burn 6 (1)

Poisoning 6 (1)

Other 63 (10)

Unknown 20 (3)

Data from Young KD, Gausche-Hill M, McClung CD, et al. A prospective, population-

based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary

arrest. Pediatrics 2004;114(1):157–64.

Table 2

Characteristics of children with in-hospital cardiac arrest

Patient characteristic n (%)

Cardiac arrest 176 (100)

No CPR (terminal phase of chronic disease) 47 (27)

CPR performed 129 (73)

Chronic disease in subset with CPR 92 (71)

Respiratory failure in subset with CPR 79 (61)

Circulatory shock in subset with CPR 37 (29)

Abbreviation: CPR, cardiopulmonary resusciation.

Data from Reis AG, Nadkarni V, Perondi MB, et al. A prospective investigation into the

epidemiology of in-hospital pediatric cardiopulmonary resuscitation using the international

Utstein reporting style. Pediatrics 2002;109(2):200–9.
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impair reperfusion during resuscitation. Asphyxia, but not VF/VT, has an
interval of trickle cerebral blood flow accompanied by profound hypoxemia.

The histology of cerebral injury following asphyxia differs from that seen
in VF. Safar and colleagues [8,9] showed that brain damage from asphyxial
cardiac arrest in dogs is worse than the damage found after equivalent
periods of circulatory arrest from VF. In addition, asphyxiated brains had
scattered microinfarcts and hemorrhage not seen in VF animals. Thus, lab-
oratory experiments demonstrate that the severity and pattern of cerebral
injury following asphyxial cardiac arrest differs from VF arrest. Clinical ev-
idence of a difference in injury patterns is suggested by a report from Mor-
imoto and colleagues [10] that described increased prevalence of brain
edema (diagnosed by head CT) in adults remaining comatose following
respiratory-induced cardiac arrest compared with cardiac arrhythmia–
induced cardiac arrest.

Do the differences between asphyxial brain injury and ‘‘cardiac-mediated’’
brain injury have clinical relevance? They do to the extent that asphyxial
injuries are more severe. Both injuries, however, demonstrate selective vul-
nerability and delayed neuronal death. Specifically, both mechanisms cause
cell death that is ‘‘delayed’’ and is first seen on histology at 24 to 72 hours
following reperfusion. The most prominent of these ‘‘selectively vulnera-
ble’’ regions are the hippocampus and reticular thalamus. Thus, although
an asphyxial injury may be more severe than a cardiac-mediated injury for
an equivalent period of ischemia, asphyxial injuries should respond simi-
larly to neuroprotective therapies.

The developing brain

Brain maturation entails a complex coordination of neuronal prolifera-
tion, migration, synaptic overgrowth, pruning, and myelination. Although
proliferation and migration are complete in humans at birth, the remaining
processes continue into early adulthood, with completion of the myelination

Table 3

Comparison of injury from ventricular fibrillation versus asphyxial cardiac arrest

Injury Ventricular fibrillation Asphyxial cardiac arrest

Postresuscitation cardiac injury Relatively more Relatively less

Postresuscitation cerebral injury Relatively less Relatively more

Cerebral blood flow Sudden complete

ischemia

Trickle flow prior to

complete ischemia

Scattered microinfarcts No Yes

Injury to basal ganglia Relatively less Relatively more

Selective vulnerability of CA1

hippocampus

Yes Yes

Selective vulnerability of

cerebellar Purkinje’s cells

Yes Yes

Comparisons are extrapolated from animal experiments.
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of long association pathways occurring in the third decade of life. Accord-
ingly, the brain’s vulnerability to injury is not constant across different age
ranges [11]. For example, rodents are extraordinarily resistant to ischemic
injury when first born and then go through a period of increased sensitivity
to injury, followed by intermediate sensitivity that lasts into adulthood
[12–15]. The period of increased vulnerability correlates with maturation
of receptors for excitatory neurotransmitters and maximal synaptogenesis.
Laboratory data also show that immature neurons and oligodendrocytes
have a lower threshold for initiating programmed cell death (apoptosis)
compared with mature cells [16–19]. These developmental events that deter-
mine susceptibility to brain injury in laboratory models also occur during
normal human development [20]. Synaptogenesis in human striatal cortex
accelerates between age 2 and 4 months, creating a condition of exuberant
connectivity that is subsequently pruned by 40% between age 8 months
and 11 years [21]. A second wave of synaptic formation and pruning, pri-
marily in the frontal cortex, has now been identified in adolescence [22].
In addition, 31P magnetic resonance spectroscopy shows that the metabolic
rate for local cerebral regions is 190% to 226% of adult levels between age
3 and 8 years, and there is a peak in the phosphomonoester spectrum that is
indicative of active myelination just before age 2 years [23].

Functional development

Coincident tomaturation seen at the tissue and cellular layer, the functional
capabilities of the brain also mature over time. The acquisitions of gross
motor, fine motor, and cognitive skills during youth are well-recognized
phenomena. Beyond early youth, brain growth continues into the twenties
and is associated with maturation of executive functions. Perhaps not surpris-
ingly, functional imaging studies show that risk-taking during adolescence is
associated with an immature pattern of cerebral activity compared with adult
activity.

Some skills can only be acquired during specific periods of development
(‘‘use it or lose it’’). For example, temporary monocular occlusion in children
at the time when visual cortical pathways are being established can result in
permanent cortical blindness in the occluded eye. Likewise, patching the
‘‘good eye’’ in patients with strabismus improves vision in the ‘‘weak eye’’
only when patching is initiated at a young age. A more prosaic example is
the ability of young children to speak a second language without accent.

There is also an age-dependent capacity for repair [24]. A dramatic example
of plasticity is the recovery that can occur in young children, but not adults,
undergoing hemispherectomy for intractable seizures [25,26]. Children who
have had hemispherectomy are more capable than adults of reallocating
functions from the removed hemisphere to the remaining hemisphere.
Similarly, language deficits are less common in children suffering injury to
the dominant hemisphere before age 8 years.
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The impact of global brain ischemia on functional outcome during ‘‘de-
velopmentally sensitive’’ periods of skill acquisition and the role of plasticity
in recovery from global ischemia has not been systematically studied. One
challenge is that injury obtained in young patients may not become apparent
until the functional correlates are required for normal behavior and are test-
able. For example, children who have learning disabilities are often not di-
agnosed until the requisite learning skills become necessary for school
performance. A greater understanding of the dynamic between injury and
development has considerable potential benefit for children who have ische-
mic brain injury.

Clinical experience

Young and Seidel [27] recently summarized the results from 44 studies re-
porting on 3094 pediatric patients with cardiopulmonary arrest. The data
showed an overall survival rate from cardiopulmonary arrest of 13%,
with in-hospital arrest rates being higher than out-of-hospital arrest rates
(24% versus 9%). Most of the reviewed studies reported good neurologic
outcome in approximately 60% of survivors; however, comparison between
studies is difficult because of the differences in inclusion criteria and the def-
inition of ‘‘good’’ neurologic outcome. Neurologic outcome assessments
that target motor function and rudimentary life-skill tasks suggest that
most patients have full recovery or severe disability [28–35]. Patients who
have poor outcome have generally suffered a severe, acute asphyxial event.
Among children with good neurologic outcome, assessments that measure
IQ or psychocognitive function often reveal impaired performance [36–
40]. Robertson and colleagues [39] recently published data on a cohort of
53 children younger than age 3 years admitted to an ICU who had traumatic
brain injury (n ¼ 26) or hypoxic ischemic (HI) brain injury (n ¼ 27) and an
initial Glasgow Coma Scale of 8 or less. Of the 23 children identified as hav-
ing ‘‘good recovery’’ based on the Glasgow Outcome Scale, 15 (65%) had
below-average scores on the Mental Developmental Index or Performance
Developmental Index. These indices, however, have imperfect correlation
with later cognitive assessments and it is possible that additional recovery
may occur or that deficits may remain ‘‘dormant’’ until uncovered by in-
creasingly complex cognitive demands associated with maturation. Addi-
tional studies are desirable to better define long-term psychocognitive
outcome.

Specific patterns of functional deficits have been described; notably,
memory deficits in adults who have global brain injury [41,42] and cerebral
palsy in neonatal asphyxia [43,44]. Similarly, the neurodevelopmental out-
comes of premature infants have been well characterized in a meta-analysis
of 227 studies by Bhutta and colleages [45]. The infrastructure that directs
high-risk neonatal ICU graduates into comprehensive assessment/treatment
programs, however, does not exist for older children who have HI injury
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and, thus, the functional outcome of children who have HI injury is less well
characterized.

Prognosis

Recently, Mandel and colleagues [46] reported on clinical and electro-
physiologic predictors of outcome in 42 pediatric patients who remained
comatose or had impaired consciousness at 24 hours following an HI injury.
Twelve patients had an eventual good outcome, 4 had mild to moderate
disability, 7 had severe disability or survival in a persistent vegetative state,
and 19 ultimately died (9 with brain death, 2 after failed repeated resuscita-
tion attempts, 8 after withdrawal of therapy). The positive predictive value
for poor outcome (severe disability, persistent vegetative state, or death;
n ¼ 26) was 91% for duration of initial cardiopulmonary resuscitation ex-
ceeding 10 minutes and 100% for (1) Glasgow Coma Scale scores less
than 5, (2) absence of spontaneous respirations, or (3) absence of pupillary
reflex at 24 hours. The positive predictive value for poor outcome was 100%
for discontinuous electroencephalographic activity, epileptiform electroen-
cephalographic activity, or bilateral absent N20 latency on sensory evoked
potential. This study is in agreement with other studies that have found neu-
rologic examination and electrophysiology studies to be good predictors of
outcome [47]. The main limitations of many of these studies are the small
sample sizes and the post hoc derivation of decision rules.

Imaging

Neuroimaging techniques have identified specific patterns of cerebral in-
jury in adults and newborns with ischemic injury. Data from human neonates
and experimental primate models of neonatal asphyxia reveal that imaging
abnormalities correlate with the nature and duration of the insult and the
maturational stage of the brain at time of injury [48]. The immature brain of
premature neonates is more vulnerable to white matter injury, whereas the
brain of term neonates is more vulnerable to gray matter injury [49]. Acute,
total asphyxia tends to result in greater injury to the brainstem and thalamus,
whereas prolonged, partial asphyxia results in greater injury to the cortex and
subcortical regions [50]. Even so, full-term infants who have prolonged, par-
tial ischemia have a different pattern of injury compared with premature
infants who have prolonged, partial ischemia. Thus, there are different
patterns of HI brain injury relative to gestational age in newborns. What is
not known is whether there are different patterns of injury relative to age in
children outside of the newborn period suffering ischemia.

MRI can be used to measure regional volume (morphometrics) and thus
characterize brain injury/recovery during follow-up of HI injury. A series of
17 adults surviving cardiac arrest studied by MRI at 6 months following re-
suscitation reported reduced hippocampal volume and a global reduction in
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brain volume [51]. The reduction in hippocampal volume is consistent with
the specific cognitive memory impairments commonly documented in adults
following cardiac arrest [52]. The reduction in global brain volume is consis-
tent with the more widespread deficits in memory, visuospatial, and executive
functions that have also been documented. Similarly, follow-upMRI for for-
mer low birth weight preterm infants demonstrates smaller regional cortical
volumes [53] and selective loss of hippocampal volume [54] compared with
control subjects. The volume losses in these former preterm infants is corre-
lated with memory performance and full-scale, verbal, and performance IQ
scores. Again, information on the predictive value and long-term changes
seen in MRI imaging of older children who have HI is limited [55].

Kreis and colleagues [56] used proton spectroscopy to study 16 children
suffering near-drowning from age 7 months to 6 years. Loss of N-acetylas-
partate from gray matter preceded the loss observed in white matter and was
more severe. There was a delayed second peak of lactate, similar to the de-
layed secondary energy failure documented in neonatal HI. A spectroscopic
index was derived that predicted neurologic outcome in this small series with
greater accuracy than published clinical criteria.

A contemporary variation of diffusion-weighted MRI (diffusion tensor
imaging; DTI) analyzes vector forces of diffusion patterns. Diffusion patterns
are highly dependent on development and orientation of axonal fibers and
oligodendroglia; thus, DTI is a sensitive tool for detecting white matter devel-
opment (myelination) and injury. DTI scans obtained from premature infants
who have white matter injury demonstrate disorganized vector forces consis-
tent with disrupted white matter tract development [57]. Furthermore, white
matter injury has been shown to correlate with diminished volume in the asso-
ciated graymatter. DTI studies on older childrenwho haveHI injury have not
been reported; however, DTI andMRI studies of normal children at different
ages confirm that myelination continues through the second decade of life in
an age-dependent, region-specific fashion [58–62]. Thus, it is likely that pat-
terns of white matter injury vary by age. If so, DTI may be useful for identify-
ing white matter injury and directing rehabilitative therapy to the associated
cortical (and functional) brain regions.

Treatment

Following resuscitation from cardiac arrest, there is a period of increased
sensitivity of the brain to secondary injury. A review by Kochanek and col-
leagues [63] provided the known precipitants of secondary injury, which in-
clude hypotension, hypoxia, hyperglycemia, and hyperthermia. Early
postresuscitative care should focus on avoiding these causes of secondary
injury (Box 1). Detailed discussion of intensive care therapy is beyond the
scope of this article. Instead, discussion is limited to hyperventilation and
hypothermia (hyperventilation because it is a pervasive problem and hypo-
thermia because it is the most promising neuroprotective strategy).
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One preventable cause of secondary injury is iatrogenic hyperventilation.
Hyperventilation has been shown to cause vasoconstriction and significantly
decreased cerebral blood flow in children following traumatic brain injury [64]
and in adults recovering from cardiac arrest [65]. Hyperventilation can also
decrease cerebral blood flow by increasing intrathoracic pressure, causing
a decrease in cardiac output and cerebral venous return. In addition, respira-
tory alkalosis shifts the oxygen hemoglobin dissociation curve to the left,
reducing oxygen delivery to tissue. These alterations are particularly danger-
ous early after resuscitation when there is prolonged, multifocal decreased
cerebral blood flow [66]. Avoidance of hyperventilation is challengingd
caregivers under stressful circumstances unintentionally but predictably
hyperventilate patients [67,68]. Tobias and colleagues [69] published a study
on pediatric patients transported from the ICU to the radiology suite by
nurses and respiratory therapists blinded to end tidal CO2 values: 23% of
readings were less than 20 torr. Increased use of quantitative continuous
CO2monitors throughout the health care systemwould decrease the potential
for harm secondary to inadvertent hyperventilation.

Measurement and control of temperature following cardiac arrest is an
important part of patient management. After arrest, children commonly
have an initial period of spontaneous hypothermia followed by a delayed
(approximately 24 hours) development of fever [69a]. These temperature
changes are relevant because hypothermia is neuroprotective, whereas hy-
perthermia can exacerbate brain injury. Accordingly, routine warming of
patients during initial hypothermia is no longer recommended. Rewarming
can negate the neuroprotective effects of hypothermia and may cause an
‘‘overshoot’’ of temperature that contributes to subsequent fever. Intentional
induction or maintenance of hypothermia (therapeutic hypothermia) has
recently been shown to be beneficial in adults recovering from cardiac ar-
rest and in newborns recovering from birth asphyxia [70–73]. Although the
studies in adults excluded asphyxia (enrollment was limited to patients
who had VF/VT), there are significant animal data to support the use of
hypothermia in asphyxial arrest [74]. Thus, consideration should be given
to actively cooling children who remain comatose following resuscitation

Box 1. Postresuscitation treatment priorities

� Avoid hypotension
� Maintain normoxia (avoid hypoxia and prolonged hyperoxia)
� Maintain euglycemia (avoid hyperglycemia and hypoglycemia)
� Avoid hyperventilation
� Avoid hyperthermia
� Avoid rewarming
� Consider induced hypothermia
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from cardiac arrest. In addition, temperature should be monitored closely
and fever should be treated aggressively.

Knowledge gaps and future directions

There is an accumulating literature on neurologic outcome in adults
resuscitated from cardiac arrest and newborns recovering from perinatal as-
phyxia. In contrast, there is very little information on children resuscitated
from cardiac arrest. Animal models showing age-dependent susceptibility to
injury and clinical data showing age-dependent windows for learning and
plasticity suggest that extrapolating from neonatal or adult experience will
be imperfect. Thus, there is a critical need for studies targeting the pediatric
age range between these populations. Important areas of inquiry include

� Age-dependent susceptibilities for injury and repair
� Contemporary imaging strategies targeting white matter development,
morphometric measurements, and functional imaging

� Clinical or laboratory markers for severity of the initial event
� Role of antiapoptotic neuroprotective strategies in children
� Induced hypothermia
� Rehabilitation strategies (eg, enriched environment, forced use) that
target age-dependent injury/repair susceptibilities

Because of the infrequent occurrence of pediatric cardiac arrest and the
number of confounding variables, advances in understanding will likely re-
quire multicenter and interdisciplinary collaborations. Although studies of
brain injury in children across a range of developmental stages will be chal-
lenging, they will also be unique opportunities to increase our understanding
of brain development, learning, and plasticity.
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